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Abstract

This paper presents an approach to research of vibration of multilayer plates of complicated form under impulse
loading. The approach is based on the elastic immersion method. The dynamic behaviour of plates is described within
the framework of the theory accounting for transverse shear strains. The boundary conditions for multilayer plates with
a curvilinear boundary are obtained. Numerical examples demonstrate functionality of the method offered. © 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The finite element method (Zienkiewicz, 1971; Segerlind, 1976; Reddy, 1997) and the boundary element
method (Banerjee and Batterfield, 1981; Brebbia et al., 1984; Rashed, 1998) are applied primarily for
analysis of strain-stressed state of plates of an arbitrary plan form.

Jaswon and Maiti (1968) were the first to apply the boundary element method to the plate-bending
problem. In solving such problems the Green functions are generally unknown. Altiero and Sikarskie
(1978) have offered an approach when the real plate is embedded into a fictitious round clamped plate for
which the Green functions are known.

Further, Zielinski (1980, 1985) used a Kirchoff rectangular simply supported plate as an enveloping plate
for studying the plate-bending problem. The technique of expansion of sought-for functions into trigo-
nometrical series was applied for solving the integral equation system instead of a discretization of the given
plate boundary.

As noted in the work of Rashed (1998), the majority of known publications deals with static bending
problems of plates considered within the framework of the classical theory. The present paper offers the
elastic immersion method generalizing the approaches described above to the case of non-stationary de-
formation of multilayer plates of an uncanonical plan form.
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2. Multilayer plate
2.1. Basic relationships

The multilayer plate is assembled from 7 layers of constant thickness and is referred to the Cartesian
coordinate system connected to the outside surface of the first layer (Fig. 1). In the coordinate plane x0y the
plate occupies a simply connected domain 2 having a boundary L of an arbitrary form

Lixy=x(0), w=y0), p<o<o,. (1)

We shall designate the normal and tangent to the boundary L as n and s, respectively.
The plate is subjected to an external impulse load P* = {pf(x,,7)} (j = 1,2I + 3) distributed on domain
Q, C €; t being time. The load vector components have the form

Pi=D =05 =P =0, 05 =p5(x,p,1), x,y€Q, (2)

The layer strains are described within the framework of the refined theory of plates (Smetankina et al.,
1995; Shupikov et al., 1996). The contact between layers excludes their delamination and mutual slipping.
The broken line hypothesis holds true for a pack of layers. Displacements of a point in the ith layer have the
form

i—1
W=ty b+ (2= Sy,
j=1

i—1
=0+ > il (2= 8,
j=1

y/~—> P°
T
N T s
\7§n i,

Q hy
—

Fig. 1. Multilayer plate.
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u=u(x,y,t), v=u(x,yt), w=wxy,t) are displacements of the coordinate plane point in the direc-
tion of the coordinate axes; Y. = ' (x, ¥, 1), lﬁ’v =/, (x,, 1) are the angles of rotation of a normal element in
the ith layer around axes Ox and Oy; 4; is thickness of the ith layer.

The strains of the layers are defined according to Cauchy’s formulas

i—1
8; = Mxx + Zhjlp)/;,x + (Z - 5i—1)"pix’
Jj=1
. i—1 ) )
& =v,+ Zh,-lﬁ;y + (z = 0¥,
=1

i—1
Yy = =y ot Y (W UL ) + = o) (W, + VL),
=1

Y= =V Wy =0 = +wy, =1L

Hereafter the expressions u,, v,, etc. denote partial derivatives of the displacements with respect to an
appropriate coordinate.
Hooke’s law connects stresses and strains in the ith layer

— e+ el o B e+ el
ol = Lt viE ), 7, = 5 (&) + el ),
i

1 —v? 1—v
i i E; i i i E; i
T = T S5 ) T T = T T 5 ) e (5)
E;
=1 = i=1,1,

i zy T myyy

where E; is Young’s modulus, v; is Poisson’s ratio of the ith layer.
The stress resultants in the ith layer are determined under the following formulas:

i i i
i i i __ i i i i
N, = / 0. dz, N, = / 0,dz, N, =N, = /5 7, dz,
i—1

0i1 Si-1

5 oi
M;:/ o' (z—di_1)dz, M;ﬁz/ 0,(z = 0;1)dz,

i1 0i-1

d;
M)lcy = Mx = / T;},(Z - 5i*1)dzy

0i-1

(3,‘ (Si
i i i i .
Qx_/a 7. dz, Qy—/(5 7,dz, i=1,1.
i—1

2.2. Equations of motion and boundary conditions

Applying Hamilton’s variational principle, using Egs. (3)-(6) and performing appropriate integration by
parts, we obtain the equations of motion of a multilayer plate
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1 1

NL AN+ =0, Z(N;yx + ;) 5 =0,

NJ+1 +Nj+1) +Mz +Ml Q; _~_p§+i — 07

e,y .y

Nj+1 N;;l) +MI +A4}i’,y - Q; +p§+1+i = 07 l: 17 9 x7y E Q?

Xy,x RN

p; being the density of the ith layer material.
Also, the corresponding boundary conditions on boundary L are obtained

SN, + cppuy = 0, SNy + Spuy = 0,
6310n + 3w =0, S3aM) + G, =0, (8)
C3+l+i,1M: + g3+l+i,2¢i = 07 = ﬁ7 X,y € L7

where u,, u, are displacements of a contour point of the coordinate plane in the direction of normal and
tangent to the boundary L, respectively; i/, , . are the angles of rotation of a normal element in the ith layer
around the tangent and normal to boundary L, respectively;

Uy, = un, + vn,, Uy = —un, + vny,
lp;:l//inerlpi”ya lﬁ 77W”y+l//”xa i=11,

N,, N, and Q, are normal tensile, tangential and transverse forces, respectively (Fig. 2a),

i i !
No=D Ny M=) N 0i=) 0,
N = Nn? + N)lni +2N! Sty

N = (N" —N;)nxn} +N! (n - n2>

0, =0nc+0Ony, i=11I

a b

Fig. 2. Forces and moments on boundary L.
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M! and M! are bending and torque moments in the ith layer, respectively (Fig. 2b),
M =Mn? + M:ni + 2M; nny +- hlz (N;an + N{“nf + 2N){y+1nxny),

M = (M M’)nan—FM’ (n —n ) —|—hZ[<N’+1 N“l)nxny—i—N’“( N ni)}, i=1

b

n, = cos(x,n), n, = cos(y,n) are directional cosines of the normal n to boundary L.
The coefficients ¢, (k = 1,27 + 3,/ = 1, 2) allow simulating particular boundary conditions on boundary
L. For example, in the case of a simply supported plate

e}

3401 = Cayrgip = 1,

I
ia)

G111 = 62 32

©)

3402 = S3+4I+i1 = 0, i=1,1

Il
Ta)

G12 = G621 = G31

Egs. (3)—(6) enable us to write the system (7) and boundary conditions (8) in terms of functions of the
displacements.
So, the dynamic boundary problem is described by the equations of motion

MU, +SU=P° x,yeQ, (10)
conditions on the curvilinear boundary L

B'U=0, x,yelL, (11)
and initial conditions

U=U,=0, r=0, (12)
where M, S and B* are square matrices of dimension (27 + 3) x (21 + 3);

U:{ui}a uj :u(x7y7[)a u2:v(xay7t)7 ”3:W(xay7t)7
u3+i:l//i(x7yat)7 u3+1+i:¢§;(xay7t)7 i=11

The elements of matrix M are equal to zero, except ms; = —C! (62 /or?), C’ Z, , p;h:. The elements of
matrix S are presented in Appendix A. The elements of matrlx B- determlnlng the boundary conditions
have the form

bt = cubl, + ciobl, k1 =121+ 3. (13)

The elements b}, and b, are given in Appendix B.
The boundary conditions for a rectangular simply supported plate are derived from relationship (13) in
view of Eq. (9) at the following directional cosines (see Appendix B):

x=0, x=4, n=1, n,=0,
(14)
y:()a y:Ba }’lX:O, nyzla

where 4 and B are geometric dimensions of a plate.
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3. Elastic immersion method
3.1. Problem statement

The original plate is immersed into an auxiliary enveloping plate having an identical layer composition.
An auxiliary plate occupies domain Qg, Q C Qg in the plane x0y (Fig. 3). The enveloping plate is loaded
within the limits of domain Q the same way as the given plate.

The contour Ly of enveloping plate and boundary conditions are selected so that it is possible to obtain a
simple analytical solution. In the present paper the auxiliary plate is a rectangular simply supported plate.
In this case the problem solution can be obtained in the form of trigonometrical series.

To ensure fulfillment of actual boundary conditions to an auxiliary plate on a trace of boundary L some
additional compensatory forces and moments Q° = {¢;(x,»,7)}, j = 1,2/ + 3, x,y € L are applied.

Hence, the initial problem (10)—(12) of vibration of the plate Q affected by an impulse load P° is reduced
to the problem of vibration of the rectangular plate Qz under the action of a known load P° and com-
pensatory loads Q° specified as curvilinear distributions P = {p{(x,y,#)}, j = 1,2/ +3

P
Pc(x7ya t) = / QC((p,t)S(x — XL,y —J’L)F((P)d% (15)
Po
where 8(x — x;, y — yr) is the two-dimensional Dirac delta-function,
ez 2] dxp . dy
I'(p) = [(XL) + () } ; xL—Ea yL—@-

The vibration of the auxiliary plate Q2 is described by the equations of motion

MU, +SU=P°+P°, x,y € @, (16)
boundary conditions
B‘U=0, x,y€Lg, (17)
conditions on a trace of the boundary L
B'U=0, x,yel, (18)
p° Q°
o Le A x

Fig. 3. Auxiliary enveloping plate.
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and initial conditions
U=U,=0, 1=0, (19)

where the elements of matrix B are derived from Eq. (11) with allowance for Egs. (9), (13) and (14). The
sought-for functions of the boundary problem formulated are the components of vectors of displacements
U and compensatory loads Q°.

The system of equations (16) and the conditions (17)—(19) allow to establish a relation

U = U[Q"(x,y,1)] (20)
and to generate a system of 2/ + 3 integral equations for definition of compensatory forces and moments
BU[Q"(x,y,1)] =0, x,y € L. (21

The compensatory forces and moments Q° enter in the system (21) as integral relations (15).

The equations of motion of the given Eq. (10) and auxiliary (16) plates inside the domain 2 are identical.
The conditions on a trace of the boundary L (18) and boundary conditions of the given plate (11) iden-
tically coincide. Identical loads P affect the enveloping and the given plates in the domain Q. Consequently,
a boundary problem solution (16)—(19) for the auxiliary plate Qs inside the domain Q C Qp identically
coincides with a boundary problem solution (10)—(12) for the initial plate.

3.2. Method of solution

Loads P° and P° as well as displacements U are expanded into trigonometrical series in domain Q by
functions satisfying simply supported conditions (17) on the boundary Lg

x y7 Zz(bjmn jm” X y)

m=1 n=1
(x,3, 1) Zzp,mn Bjn(x, ), (22)
m=1n=1
pl X, p,t) X;Zplmn Bin(x,y), j=1,21+3,
where
By, = cos % sin nt? By, = Sin % cos ?,
B3, = sin ? sin ? Bsimn = Biom,

B3+I+i,mn = BZmVn = 171

The coefficients of expansion of an external load have the following form:

plmn _pZmn = p3+1 mn p3+l+z mn 07

Po(t) = 75 / / P5(x, 3, 1) B3 (x, y) drdy.

i=1,1

b

The coefficients of expansion for P° [see Eq. (15)] can be written as

4 P1
p;:mn(t) :E/(P q/((pv ) jmn(xbyL)F((p)d(p' (24)
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In doing so, the following properties of the Dirac delta-function are taken into account:
S(x — X0, — ) = 8(x — x) 8(y — »),

/ F()8(x — xo)dv = f(x0).

Thus, the system of equations (16) for each pair of values m and n becomes

M"'®,, + A" ®,,, = P, + P°

mn mn?

where M™ and A™ are square matrices,

ann = {pjcmn}7 ann = {p;mn}’ (Dmn = {¢jmn}7 J = 172[+ 3

The elements of matrix M™" are equal to zero except for m3y = C|. The elements of matrix A" are given in
Appendix C.

Since in the system (25) only the inertia of motion in transverse direction is taken into account, it can be
presented as a single differential equation

2143

C;[)$3mn + Z}";n/n¢jmn = p;mn +p§mn (26)
=

with initial conditions

¢3mn (O) = (i)?ﬁmn (0) = 07
and 2/ + 2 algebraic equations

Amn(bmn - PC + an(p%mn- (27)

mn

The matrix A™ is obtained from A”” by striking out the third column and third row. The vectors (D,,,,, and
P;m turn out from vectors ®,,, and P} , respectively, by deletion of the third element. The vector Vm,, is

obtained from the third column of a matrix A™ by deletion of element 133
The system (27) enables us to express coefficients ¢, (¢), (j = 1,21 + 3, # 3) through ¢, (¢)

(Dmn = Amnann + and)3mnﬂ

where

[\mn — [A\mn’1 V AmnV
As a result, the coefficients of expansion of the displacements reduce to

(Dm” = l“m”P‘:’m + and):%mnv (28)
where

=, = k=12, j=T72I,
Y=y =0, i=1,21+3,
mn /'{mn l.yj:m,

Vitize; = Aotizeg

Vimn = Vimn; Vimn = 17 Vitjmn = V2+jmn, i= 1323 J = 172[
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The relationship (28) allows transforming Eq. (26) to the form

. 1 2143

¢3mn + wrznnqsf%mn = a (pgmn + Zéjm”p;mn ) (29)
p =1

where
2/+3
mn - er;jﬂ ]mm

243

Osmn =1, Gy = =D _A50yy', i=T2A+3, i#3.
=1

The solution of Eq. (29) in view of the initial conditions (26) is obtained by using the Laplace integral
transform

wmn C] wmn

Brmn(t) = D (1) COS [t — 10)] & (1) S D0)] 1 / | lpzm,m

21+3

+ Zémmpm sin [w,,,, (¢t — 1)] dz.

Putting ¢, = sAt, where At =t — t; is a step on time (Smetankina et al., 1995), this solution can be repre-
sented in the form of recurrence formulas

2143
s+1 s IS e,s+1 c,s+1
3mn ’711¢3mn + 1/’12¢3mn + N13P3mn + § nllplmn )

2[+3
s+l s IS e,s+1 c,s+1
3mn ’721¢3mn + 7’22¢3mn + N23P3n + § n21p1mn .

Here
S 1-C
= C, =— 5= 5imna
Ui ) Oy’ M3 = Cf,wi,,’ M = Mz
Ny = —SOmn, Ny =0C, M= 15 = N230imn;

Cl, ’
C = cos(w,,At), S = sin(w,,Af).

The recurrence formulas enable us to write coefficients of expansion of the displacements (22) in the final
form

2143
S+l mn CS+1 3+] R LY )
zmn § :nlj pjmn Cimnr 1T 17 21 + 37 (30)
where
o =
)),j +Ulmn’1,j;

e s+1

Sfr:nl Vimn (’71] ¢3mn + n12¢3mn + 1713p3mn )

Thus, the relation between displacements and compensatory loads on each step on time is established.



2280 A.N. Shupikov, N.V. Smetankina | International Journal of Solids and Structures 38 (2001) 2271-2290

3.3. Determination of compensatory loads

Compensatory loads are determined from the system of integral equations (21). As in the paper by
Zielinski (1985), compensatory forces and moments Q° are expanded into a single series along a trace of the
boundary L

q5(,1) ZZ/W dylp), j=T1,21+3, (31)

o=1,2 u=0

where

dy = sin[uy(e)], o = cos[uy(e)],
(@) = 21n(@ — @)/ (@1 — @o), 0< () <2m.

With allowance for Eq. (31) the coefficients (24) are transformed to the form

P = ZZ/M )0, j=1,21+3, (32)

o=1,2 u=0
where
mnn 4 (pl
ejw =R Aoy (@) Bjn (x1, y2) () dop,
AB J,,

and the coefficients (30) are written as

2I+3 00
s+1 mn nmn v+1 s+1 . 1T AT | 2
o] ZZZR O furl et i=T1,21+3. (33)

j=lo=12pu=0

The displacement functions U entering in Eq. (21) also are expanded into series along a trace of the
boundary L. As a result, the system (21) takes the form

Z;z;é,w =0. (34)

Here

1 2[+'§
ém;t / bkuk o(lt )d@, 1= 1 2I—|— 3 o = 1 2
'u k=1 v Po

A = @1 — @y, ,u:(); }w:((pl_(po)/z? ,u:l,Z,...
The conditions (34) are satisfied for all values ¢, ¢ € [@,, ¢,] when
(1) =0, i=1,2I4+3, a=1,2, u=0,1,... (35)

The relationships (32), (33) and (35) allow reducing the system of integral equations (21) to a system of
algebraic equations

2143

ZZZT,W/m/{jﬂ‘ =l i=120+3, a=12, p=0,1,..., (36)

Jj=1p=12v=0

where
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2143
mn mn . 2mn
§ :E :Qjﬁti :Tckj ytkoc,u )

m=1 n=
oo oo 2[+3
v+1 2mn
kmnxzkazu ’
m=1 n=1 k=1

L, i=1_ .
0y = { l ~ being the Kronecker delta,
0, i#j

1 P1

2143

mn P lmn
Tiopjpv = Gil [§ § 0//{\ kj /lkD(/t Y

m=1 n=

oo oo 2[+3
s‘+l _ s+1 ., lmn
zozu - § : z : § :Skmn 7tkoc,u

m=1 n=1 k=

312

+ S

Ilmn __ ~
ko —
iu

b,kBkmn(xLayL) AM( ) dq”

Po
P1

1
titm =7 | DiBim (o 3) (@) Ao, ik =T.20+3, a=1,2, p=0,1,...
" J o
Egs. (36) are solved on each step on time. The order of the system (36) depends on the number of layers in a
plate and the number of terms of series taken into account in expansions (31) and (34). After calculation of
coefficients jﬁtl we find the values of compensatory loads (31). Finally, the displacements and stresses in
layers of the given plate Q2 are determined by formulas (33), (22), (3) and (5).

4. Numerical results

The functionality of the method proposed is illustrated by examples of investigating the strain-stressed
state of simply supported plates with boundary given by equations of Lamé’s curves (Fig. 4)

x(p) = 4/2 + acos”* (),
¥(@) = B/2+ Bsin”(¢).

If ¢ =2 and o # 3, Egs. (37) describe an ellipse with point x = 4/2, y = B/2 as its centre and semi-axes o
and f (line 1 in Fig. 4). At increasing parameter ¢ Lamé’s curves approach asymptotically to a rectangle
with sides 2o and 2. Lines 2 and 3 correspond to ¢ = 4 and ¢ = 10, respectively.

An impulse load (2) is uniformly distributed over a circular area with radius R and changes in time
according to the law

(37)

¥
B
2 3
f; Bl
(04
i & J
QE
0 Xq A x

Fig. 4. Lamé’s curves.
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e 1 ) Tt
ps = §P0[1 +sgn(t; — t)] sin o) (38)

where P, is load intensity, ¢ is impulse duration. The coefficients of expansion of the load (38) into Fourier
series (23) have the form

8P J1 (R . _ . ,
P = ;)181;3«/:;””) sin (mzxo) sin (%) [1 4 sgn(f, —1)] s1n2<7;—1>7

where x, )y are coordinates of centre of loaded area,

mm\ 2 nm 2
Vo = {(7) +(%) ]
A three-layer plate is considered. The plate has the following parameters: ¢ = 10, « = f§ =0.25m, &, =
hy=102m, iy =5x 107 m, E; = E3 = 6.12 x 10* MPa, E, = 2.8 x 10> MPa, v; = v; = 0.22,v, = 0.38,
P =p;=25%x10"kgm=3, p, = 1.2 x 10° kgm3.
The load characteristics (38) are R=2x 1072 m, Py =2 MPa, t; =5x 107% s, xo = 4/2, yo = B/2.
Stresses are calculated at the point with coordinates x. = 4/2, y. = B/2, z. = 5.

1/2

Table 1

Influence of dimensions of the enveloping domain upon convergence of the solution
A/ (2x) m, =, 1, "y = 1
2 30 4 35 4
4 60 8 70 8
6 100 8 110 8
8 130 12 140 12
10 140 12 160 12

15
<
E 10
[ 4}
B 5
=
)

0 e

— 9 \

Time # x 10° (§)

Fig. 5. Stress o2 in a three-layer plate, g = 10.
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The influence of dimensions of the enveloping plate upon convergence of the solution was studied. The
number of terms in expansions (22) (m},, n},, m,n’) and in expansions (31) (u, ;) are given in Table 1. At
their further increase the change of the maximum deflections does not exceed 0.5% and that of stresses 1%.

That is at m > m!,n > n’, u >

Stress ( MPa )

Stress ( MPa )

Time fxlOB(S)
19,2

3
m Time #x107(s)
c « d 18 A

2
0.8 £ P
0.6
LI N
0.2 J .
0.2 0.4

Axis of ellipse cd (m)

Fig. 6. Distribution of stresses o> along the axis of elliptical plate.

1 18 )

? e 8 /A’\
. 0.8 :
0.6

30 7
04
20 1
10 1 0.2
0
0.2 0.4
104 Axis of ellipse cd (m)

Fig. 7. Distribution of stresses o'f, along the axis of elliptical plate.
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max | max

w - W PR
m,n, i My My sy

x 100% < 0.5%,

Wmax

[T

and at m > ml, n > nl, u> W

maxl _ max|
m,n,u g

g

iy iy

x 100% < 1%.

Gmax

T
Mg Ngsle

Henceforth it is taken 4 = B =1 m.

3

E B

-

S 2 e

* 3

: 2a(1-8) + 2y

g

=

o

=

DO

A 0 VAN

VAR \

20 40 60 80

40

o

% 30

& 20

2 10

v

0 e

20 40 60 80

Time #x10° (s)

Fig. 8. Deflection and stresses in a five-layer plate.
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Fig. 5 shows the variation of stresses in time for the plate described above (the solid line). The dashed
line shows similar dependence for a square plate obtained by a technique proposed by Smetankina et al.
(19995). It may be noted that the dependences presented are closely spaced. It confirms the reliability of the
results obtained by the method offered.

A three-layer elliptical plate with parameters g =2, 0 =02m, f=0.1m, /, =5x 107 m (i =1,2,3) is
considered. The mechanical properties of layer materials are the same as in the previous case. The char-
acteristics of impulse load (38) have the following values: R = 1072 m, P, = 10 MPa, t; = 7 x 107* 5. The
central point of loaded area coincides with the focus of the ellipse xo = 4/2 — (o — B2)"/%; 3 = B/2.

The distribution of normal stresses along an axis of the elliptical plate at different instants of time was
studied: o} = a}(x,¥,2,7), 0, = 0)(x,,2,1), 4/2 —0<x<A/2+0, y=B/2, z= 03, t = 4. The calcula-
tion results are presented in Figs. 6 and 7. The effect of concentration of maximum stresses in both focal
points of the plate in the instant of time ¢ = 4 x 10~* s has been detected. Stress concentration in both focal
points of an elliptical plate when the load is applied only in one focal point is explained by effect of re-
flection of flexural waves from the elliptical boundary of a plate and their subsequent concentration in focal
points.

The next example studies the case of a five-layer plate with the boundary given by equations of hy-
potrochoid

x(¢) =A4/2+ ol — ) cos(Be) + 7 cos[(1 — B,
y(@) = B/2 +a(l — ) sin(Be) — ysin[(1 — )¢l

where « = 0.4 m, f=0.25,7y=7 x 1072 m.

The plate is subjected to the impulsive load (38). The characteristics of load and plate are R = 2 x 1072
m, Py, =10 MPa, t, =5 x 1073 S, Xo ZA/Z, Yo ZB/Z, h=hy=hs = 1072 m, i, = hy =5 X 10-3 m, £ =
E;=FEs=6.12x10* MPa, E, =E,;=28x 10> MPa, v =v3=v5=022, v, =v,=0.38, p, = p; =
ps =2.5x10° kgm=3, p, = p, = 1.2 x 10° kgm~3. Stresses are calculated at the point with coordinates
x.=A4/2, y. = B/2, z. = Js. Fig. 8 shows the time dependences of deflection and stresses in the plate.

300
™
S 200
g 100
wn

0

Time # x 10 (8)

Fig. 9. Variation of stress o, in a round plate under impact.
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A single-layer steel round plate subjected to an impact load is considered. Parameters of the plate are
g=2,0=p=0287m, h =3 x 1072 m. Loading is effected by dropping a steel ball with the mass of 18.2
kg from the height of 0.26 m in the centre of the plate (xo = 4/2, yo = B/2, zy = 0). The mechanical
properties of the plate and the ball are as follows: E = 2.1 x 10> MPa, v = 0.3, p = 7.85 x 10* kgm>.

The impact is described in the same manner as in the work of Smetankina et al. (1995). The contact
approach of bodies is determined by Hertz’s theory. Stresses are calculated in the centre of the plate at
z=h.

In Fig. 9 the variation of stress o, (the solid line) is shown. The dashed line shows similar dependence
obtained in the work of Goloskokov and Filippov (1977) by using symbolical method and expanding the
solution into a series by Bessel functions. It should be noted that the dependences obtained in both cases
practically coincide.

5. Conclusions

A method of investigating non-stationary vibration of multilayer plates of an arbitrary plan form under
impulse and impact loading has been developed.

The method is based on application of boundary integral equations. However, as distinct from the
known similar approaches, at solving a system of integral equations instead of discretization of the
boundary of a plate, the unknown boundary functions are expanded into trigonometrical series along
contour of this plate. It considerably simplifies the preparation of input data in computations and improves
the accuracy of a problem solution.

The dynamic behaviour of multilayer plates is described by the first-order refined theory. For a pack of
layers the broken line hypothesis is accepted.

The possibilities of the method are demonstrated by examples of analysis of the strain-stressed state of
multilayer plates, their contour being described by Lamé’s curves. Such selection of the contour, without a
loss a generality, allows to confirm reliability of results by a comparison with the similar data obtained by
other methods. A five-layer plate with contour given by equations of hypotrochoid is presented in order to
demonstrate the range of application of the elastic immersion method to the plate-bending problem.

The internal convergence of the method presented has been studied. In case where the form of Lamé’s
curve comes nearer to rectangular, a comparison with the data obtained for a square plate by other
technique has been performed. The calculation results for a single-layer round plate under impact loading
are compared with the similar data by other authors. In all cases the comparative analysis of dependences
shows their coincidence that confirms reliability of results obtained by the method proposed.

For an elliptical plate under an impulse localized load applied at the focus the effect of concentration of
maximum stresses in both focuses is shown.

Appendix A
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